Practice Worksheet – The 4 Centers of a Triangle

In #'s 1 – 4 state whether the indicated center of the triangle appears to be on a side of the triangle, in the interior of the triangle, or in the exterior of the triangle.

1) The centroid of:	a) an acute angle	b) a right angle	c) an obtuse angle
2) The circumcenter of:	a) an acute Δ	b) a right Δ	c) an obtuse Δ
3) The incenter of:	a) an acute Δ	b) a right Δ	c) an obtuse Δ
4) The orthocenter of:	a) an acute Δ	b) a right Δ	c) an obtuse Δ

5) If 2 altitudes of a given ∆ fall outside the triangle, the triangle is
a) right
b) acute c) obtuse

6) If the point at which the perpendicular bisectors of the sides of a triangle are concurrent is outside the triangle, the triangle is a) acute b) right c) obtuse

7) Construct the centroid P of $\triangle ABC$.

8) Construct the circumcenter of Δ LMN.

9) Construct the incenter of an obtuse triangle.

10) Construct the orthocenter of an acute triangle.

11) In $\triangle ABC$, medians \overline{AD} , \overline{BE} , and \overline{CF} intersect at P. If $\overline{AD} = 24$ in., find the length of \overline{AP} .

12) In $\triangle ABC$, medians \overline{AD} , \overline{BE} , and \overline{CF} are concurrent at P. If $\overline{AP} = 8$, find the length of \overline{AD} and \overline{PD} .

13) In ΔRST , the medians \overline{SL} , \overline{RN} , and \overline{TM} are concurrent at point P. If $\overline{SP} = 10$, find \overline{PL} and \overline{SL} .

14) Construct the inscribed circle of an acute triangle.

15) The perpendicular bisectors of $\triangle QRS$ intersect at P. If $\overline{QP} = 3x$, $\overline{RP} = 18$, and $\overline{SP} = y + 10$, solve for x and y.

16) The perpendicular bisectors of Δ LMN intersect at O. If $\overline{LO} = 2x - 4$, $\overline{MO} = y - 6$, and $\overline{NO} = 10$. Solve for x and y.

17) The circumcenter of ΔWXY is point Z. If $\overline{WZ} = 17$, $\overline{XZ} = 3x - 13$, and $\overline{YZ} = x + y$. Solve for x and y.